Using the combination of Concentrated solar power (CSP) and calcium looping (CaL) technology is an effective way to solve the problems of intermittent solar energy, but calcium-based materials are prone to sintering due to the densification of the surface structure during high-temperature cycling. In this study, the enhancement mechanism of Co and Cr doping in terms of the adsorption properties of CaO was investigated by Density Functional Theory (DFT) calculations. The results indicate that Co and Cr doping shortens the bond length between metal and oxygen atoms, enhances covalent bonding interactions, and reduces the oxygen vacancy formation energy. Meanwhile, the O2− diffusion energy barrier decreased from 4.606 eV for CaO to 3.648 eV for Co-CaO and 2.854 eV for Cr-CaO, which promoted CO2 adsorption kinetics. The CO2 adsorption energy was significantly increased in terms of the absolute value, and a partial density of states (PDOS) analysis indicated that doping enhanced the C-O orbital hybridization strength. In addition, Ca4O4 cluster adsorption calculations indicated that the formation of stronger metal–oxygen bonds on the doped surface effectively inhibited particle migration and sintering. This work reveals the mechanisms of transition metal doping in optimizing the electronic structure of CaO and enhancing CO2 adsorption performance and sintering resistance, which provides a theoretical basis for the design of efficient calcium-based sorbents.
Loading....